
Department of Electrical & Computer Engineering

North South University

Senior Design Project

Prediction of Idiopathic Pulmonary Fibrosis

Progression Using Deep Learning

Shazzad Hasan ID # 1530604043

Md. Tanzim hossain ID # 1620776042

Md. Saidur Rahman ID # 1621529042

Faculty Advisor

Dr. Tanzilur Rahman

Assistant Professor

ECE Department

Fall 2020



LETTER OF TRANSMITTAL

December 2020

To

Dr. Mohammad Rezaul Bari

Associate Professor & Chair

Department of Electrical & Computer Engineering

North South University, Dhaka

Subject: Submission of Capstone Project on “Prediction of Id-

iopathic Pulmonary Fibrosis Progression Using Deep Learning”.

Dear Sir,

With due respect, we would like to submit our Capstone Project Report

on “Prediction of Idiopathic Pulmonary Fibrosis Progression Using Deep

Learning” as a part of our B.Sc. program. The report deals with Predic-

tion of Idiopathic Pulmonary Fibrosis Progression. It helps patients and

their families to understand their prognosis when they are first diagnosed

with this incurable lung disease. We tried our level best to make the re-

port meaningful and informative. This project was very much valuable to

us as it helped us gain experience from practical field and apply in real

life. It was a great learning experience for us. We tried to the maximum

competence to meet all the dimensions required from this report.

1



We will be highly obliged if you are kind enough to receive this report and

provide your valuable judgment. It would be our immense pleasure if you

find this report useful and informative to have an apparent perspective on

the issue.

Sincerely Yours,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Shazzad Hasan

ECE Department

North South University, Bangladesh

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Md. Tanzim Hossain

ECE Department

North South University, Bangladesh

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Md. Saidur Rahman

ECE Department

North South University, Bangladesh

2



APPROVAL

The capstone project entitled “Prediction of Idiopathic Pulmonary

Fibrosis Progression Using Deep Learning” by Shazzad Hasan

(ID # 1530604043), Md. Tanzim Hossain (ID # 1620776042)

and Md. Saidur Rahman (ID # 1621529042), is approved in partial

fulfillment of the requirement of the Degree of Bachelor of Science in Com-

puter Science and Engineering on December, 2020 and has been accepted

as satisfactory.

Supervisor’s Signature

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Tanzilur Rahman

Assistant Professor
Department of Electrical & Computer Engineering

North South University
Dhaka, Bangladesh.

Department Chair’s Signature

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Mohammad Rezaul Bari
Associate Professor & Chair

Department of Electrical & Computer Engineering
North South University

Dhaka, Bangladesh.

3



DECLARATION

This is our truthful declaration that the “Capstone Project Report” we
have prepared is not a copy of any “Capstone Project Report” previously
made by any other team. We also express our honest confirmation in sup-
port of the fact that the said “Capstone Project Report” has neither been
used before to fulfill any other course related purpose nor it will be sub-
mitted to any other team or authority in future. Any material reproduced
in this project has been properly acknowledged.

Students’ name & Signature

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Shazzad Hasan
ECE Department
North South University, Bangladesh

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Md. Tanzim Hossain
ECE Department
North South University, Bangladesh

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Md. Saidur Rahman
ECE Department
North South University, Bangladesh

4



ACKNOWLEDGEMENT

First of all, we wish to express our gratitude to the Almighty for giving us
the strength to perform our responsibilities and complete the report.

The capstone project program is very helpful to bridge the gap be-
tween the theoretical knowledge and real life experience as part of Bachelor
of Science (B.Sc.) program. This report has been designed to have a prac-
tical experience through the theoretical understanding.

We also acknowledge our profound sense of gratitude to all the
teachers who have been instrumental for providing us the technical knowl-
edge and moral support to complete the project with full understanding.

We would like to convey our gratitude to our faculty Dr. Tanzilur
Rahman for his stimulating inspiration, kind guidance, valuable sugges-
tions, sagacious advice and kind cooperation throughout the period of work
undertaken, which has been instrumented in the success of our project. At
this level of understanding it is often difficult to understand the wide spec-
trum of knowledge without proper guidance and advice. His suggestions
& guidance have made the report a good manner.

We thank our friends and family for their moral support to carve
out this project and always offer their support.

5



ABSTRACT

Idiopathic Pulmonary fibrosis is a progressive lungs disease which usually
gets worse over time. Once this disease damages the lungs, it cannot be
cured totally. But early detection and proper diagnosis can help to keep
this disease in control. It causes scarring in the lungs over time. As an
effect, people face breathing difficulty. It can cause shortness of breath,
even at rest. The general causes of pulmonary fibrosis can be exposure
to toxic element like coal dust, asbestos fibres, silica dust, hard metal
dusts etc. But in majority of the cases, the doctor cannot figure out the
exact cause of this disease. That’s why this disease is termed as Idiopathic
Pulmonary Fibrosis. In near future, early diagnosis of pulmonary fibrosis
should be possible. Deep learning model is helping to use the human
resources efficiently and it is also reducing the expenses spent on the social
and healthcare aspects of this deadly disease. In this project our job is
to build a model that can predict the progression of idiopathic pulmonary
fibrosis. We complete this project in two parts. in the first part we work
with image data along with some portion of categorical data to build a
model using transfer learning. In the second part we use the model and
to generate new data frame to work with. Using that data frame with
some modification and calculation we build the final model to predict the
progression. We have trained 6 different model, which include 4 different
type of Efficientnet namely B0, B1, B2, B4. And ResNet50 and VGG16.
Along with these model we also use quantile regression to build our final
model. We have evaluated our trained model on a modified version of the
Laplace Log Likelihood and we have achieved the evaluation score as high
as to -6.6767 which is better than any other existing model.
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Chapter 1

Introduction

In this chapter we will discuss about lung, what is idiopathic pulmonary
fibrosis, what are the symptoms, what are the causes and risks, process
of diagnosis, what are the treatments, what are the complications and at
last we will talk about CT scan.

1.1 Lung

Figure (1.1) Lung

Lungs are sacks of tissue located just below the rib cage and above
the diaphragm. They are an important part of the respiratory system and
waste management for the body.

A person’s lungs are not the same size. The right lung is a little
wider than the left lung, but it is also shorter. The right lung is shorter
because it has to make room for the liver, which is right beneath it. The
left lung is narrower because it must make room for the heart.
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Chapter 1. Introduction 1.2. Idiopathic Pulmonary Fibrosis

Typically, a man’s lungs can hold more air than a woman. At
rest, a man’s lungs can hold around 750 cubic centimeters of air, while a
woman can hold around 285 to 393 cubic centimeters of air. The lungs are
over-engineered to accomplish the job that we ask them to do. In healthy
people without chronic lung disease, even at maximum exercise intensity,
we only use 70 percent of the possible lung capacity.

The right lung is divided into three different sections, called lobes.
The left lung has just two lobes. The lobes are made of sponge-like tissue
that is surrounded by a membrane called pleura, which separates the lungs
from the chest wall. Each lung half has its own pleura sack. This is why,
when one lung is punctured, the other can go on working.

As a person breathes, air travels down the throat and into the
trachea, also known as the windpipe. The trachea divides into smaller
passages called the bronchial tubes. The bronchial tubes go into each lung.
The bronchial tubes branch out into smaller subdivisions throughout each
side of the lung. The smallest branches are called bronchioles and each
bronchiole has an air sac, also called alveoli. There are around 480 million
alveoli in the human lungs. The alveoli have many capillary veins in their
walls. Oxygen passes through the alveoli, into the capillaries and into
the blood. It is carried to the heart and then pumped throughout the
body to the tissues and organs. As oxygen is going into the bloodstream,
carbon dioxide passes from the blood into the alveoli and then makes its
journey out of the body. This process is called gas exchange. When a
person breathes shallowly, carbon dioxide accumulates inside the body.
This accumulation causes yawning.

The lungs have a special way to protect themselves. Cilia, which
look like a coating of very small hairs, line the bronchial tubes. The cilia
wave back and forth spreading mucus into the throat so that it can be
dispelled by the body. Mucus cleans out the lungs and rids them of dust,
germs and any other unwanted items that may end up in the lungs.

13



Chapter 1. Introduction 1.2. Idiopathic Pulmonary Fibrosis

1.2 Idiopathic Pulmonary Fibrosis

Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive and life-
limiting condition. This condition causes scar tissue to build up in the
lungs, which makes it more difficult for your lungs to work properly.

As pulmonary fibrosis worsens, you become progressively shorter of
breath. In the end, IPF leads to life-threatening problems including respi-
ratory failure. Progress rate can differ considerably from person to person.
In most cases, people experience respiratory problems, progressive scarring
of the lungs, and a gradual reduction in lung function over the years. Quite
frequently, for several years, infected patients have slight scarring in the
lungs with little or no improvement in the condition. The condition can
develop quickly (acutely) in some cases, causing life-threatening complica-
tions within a few years of diagnosis.

The word ’idiopathic’ means unexplained or unproven the root
cause of the condition, it has recently been shown that genetic vulnerability
accounts for 35-40 percent of the risk of developing this disease. While
there is no cure for IPF, there are several therapies available to control
the condition and a range of potential therapeutic approaches are being
explored. Ultimately, a lung transplant would require certain affected
people.

Figure (1.2) Lung with idiopathic pulmonary fibrosis

14



Chapter 1. Introduction 1.2. Idiopathic Pulmonary Fibrosis

1.2.1 Symptoms of Idiopathic Pulmonary Fibrosis

No symptoms may occur in the early stages of IPF. The development of
the condition as mentioned above is highly variable. Some people may ex-
perience ’exacerbation’ in which symptoms intensify for a period of time,
before some improvement. The original, characteristic symptom is short-
ness of breath that is particularly noticeable during exercise. This is known
as dyspepsia, or breathlessness. A moderate, dry cough that produces little
or no sputum (non-productive cough) can also be seen by affected persons.
For more than 30 days, this constant, non-productive cough persists.

the condition progresses, upon significant exertion or exercise, af-
fected individuals experience breathlessness. They may show rapid, shal-
low breathing. There may also be the dry cough. Breathlessness will
probably grow upon minimal exertion or even at rest. Individuals affected
can experience repeated, unmanageable bursts of coughing.

Additional symptoms that may arise include abnormal fatigue,
chest pain, slow unintended weight loss and painful joints and muscles.
Some people can develop clubbing of the toes or fingers. Clubbing is when
the tissue swells at the bottom of the fingernails and toenails, becoming
broader and more oval. Individuals affected have an increased risk of re-
peated chest infections (chronic pneumonia).

Ultimately, respiratory function in individuals with IPF declines
to cause severe complications including respiratory failure. Pulmonary
fibrosis can lead to other severe medical conditions including pneumonia
(lung infection), collapsed lungs (pneumothorax), high blood pressure of
the main artery of the lungs (pulmonary hypertension), blood clots in the
lungs (pulmonary embolism), and heart failure. Individuals with IPF may
be at an increased risk of developing lung cancer.

Some individuals experience an acute exacerbation, whic -h de-
scribes a rapid progression of the disease and a rapid deterioration of lung
function. Acute exacerbations may be associated with a complicating fac-
tor such as an infection, pulmonary embolism, pneumothorax or heart
failure. However, in many cases, acute exacerbations occur without any
identifiable cause.

15



Chapter 1. Introduction 1.2. Idiopathic Pulmonary Fibrosis

1.2.2 Causes and Risks of Idiopathic Pulmonary Fibrosis

There is no complete understanding of the precise, underlying cause of
IPF. The disease exists in households, often sporadically as well. Various
factors, including immunological, environmental, and genetic factors, are
thought to play a role in the disorder’s development. A mutation in the
MUC5B gene is the main risk factor representing 30 per cent of the risk
of developing IPF. MUC5B gene encodes a member of the mucin family
of proteins, which are highly glycosylated macromolecular components of
mucus secretions. This family member is the major gel-forming mucin in
mucus. That results in more mucus production in the smallest airways in
the lung (respiratory bronchioles).

Researchers have assumed for several years that most cases arise
from widespread inflammation in the lungs, which has evolved to cause
excessive scarring in the lungs. Researchers now conclude, however, that
most cases result from damage to some cells lining the tiny airways and
alveoli (epithelial cells). The alveoli are small, thin-walled air sacs that
are located in the lungs in massive quantities. Alveoli are where the blood
flows oxygen, and the blood releases carbon dioxide. At the ends of short,
narrow tubes called bronchioles, which branch off from the main airway
passages within the lungs. Basically, air is breathed in through the nose
and mouth and travels down the throat to the windpipe (trachea). The
trachea divides into air passages called bronchial tubes to which the bron-
chioles are connected. Most likely, as a part of normal wound healing,
the body attempts to repair the damaged epithelial cells. This response
is abnormal leading to progressive scarring and damage to the alveoli and
surrounding lung tissue.

As explained, the underlying reason why the initial harm happens
isn’t continuously understood. Such harm could result from chronic ex-
posure to Associate in Nursing inciting or ‘triggering’ agent. Cigarette
smoking is powerfully related to IPF, notably in people with a minimum
of twenty ‘pack’ years of smoking history. Extra triggering agents embrace
chronic inhaling to the lungs of foreign material (chronic aspiration) and
therefore the chronic respiratory in of sure environmental pollutants to-
gether with numerous gases and fumes, inorganic dusts (e.g. silicon dioxide
and laborious metal dusts), and organic dusts (e.g. microorganism and
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animal proteins). Infective agent or microorganism infections, radiation
therapies, and sure medications together with specific chemotherapeutical
medication, antibiotics and heart medications have additionally been con-
nected to IPF. Reaction diseases like rheumatism, lupus or scleroderma
square measure acknowledged to be related to pneumonic pathology. In
several cases, no inciting or triggering agent are often known.

In 5-10% of the cases, IPF has occurred in additional than one
member of the same family unit (i.e. parent, kids and siblings). Once this
happens, the term familial upset pneumonic pathology is employed. The
symptoms and objective signs of familial IPF square measure an equivalent
as those for infrequent IPF, however the disorder tends to occur at a rather
younger age. Factors that make someone more susceptible to pulmonary
fibrosis include

• Age: Although pulmonary fibrosis has been diagnosed in children
and infants, the disorder is much more likely to affect middle-aged
and older adults.

• Sex: Idiopathic pulmonary fibrosis is more likely to affect men than
women.

• Smoking: Far more smokers and former smokers develop pulmonary
fibrosis than do people who have never smoked.

• Certain occupations: You have an increased risk of developing
pulmonary fibrosis if you work in mining, farming or construction or
if you’re exposed to pollutants known to damage your lungs.

• Cancer treatments: Having radiation treatments to your chest or
using certain chemotherapy drugs can increase your risk of pulmonary
fibrosis.

• Genetic factors: Some types of pulmonary fibrosis run in families,
and genetic factors may be a component.

1.2.3 Diagnosis of Idiopathic Pulmonary Fibrosis

A diagnosis of idiopathic pulmonary fibrosis can be assumed based on
identifying the characteristic symptoms, a clear history of the patient, and

17
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a comprehensive clinical examination. A diagnosis can be confirmed based
on a number of specialized examinations, including conventional chest X-
rays (radiography), CT scans, Pulmonary function tests, blood tests, and
surgical removal and microscopic lung tissue analysis (lung biopsy).

1.2.4 Treatments of Idiopathic Pulmonary Fibrosis

Traditional x-rays of the chest can reveal scarring in the lungs which is
indicative but not IPF diagnosis. At the time of diagnosis, certain people
may have regular chest x-rays. To diagnose individuals with IPF, a spe-
cial form of CT scanning known as high resolution computed tomography
(HRCT) may be used. A device and x-rays are used during CT scan-
ning to produce a film that displays cross-sectional images of some tissue
structures. HRCT offers clearer, more accurate photographs of the lungs
than traditional x-rays or standard CT scans. The presence of scar tissue
and the degree of lung damage can be revealed by HRCT, and in certain
cases the presence of clear results can be sufficient to determine a diagnosis.
Many IPF cases include a distinct pattern of lung damage known as typical
interstitial pneumonia (UIP). This pattern consists of patches of natural
lung tissues, which contrast with thick scar tissue patches (fibrosis).

Pulmonary function tests may also be useful to measure how effi-
ciently the lungs absorb and exhale oxygen, and how easily they transfer
oxygen to the blood. There are no IPF blood tests, but other factors
may help to rule out such blood tests. Exercise monitoring that mea-
sures blood pressure, levels of oxygen saturation and heart function may
be recommended.

A procedure called bronchoalveolar lavage (BAL) can help to rule
out other conditions. A narrow tube (bronchoscope) is slipped down the
windpipe into the lungs during BAL, and a sterile solution is passed
through the tube that washes out cells. This fluid is collected and the
tube is then removed enabling examination of the cells. If further testing
cannot confirm a diagnosis of IPF, a lung biopsy or a video-assisted tho-
racoscopy may be needed. A lung biopsy requires the removal from many
locations inside the lungs of samples of lung tissue. A lung biopsy will rule
out particular conditions and confirm an IPF diagnosis.

18
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Video-assisted thoracoscopy involves placing, through a very small
cut (incision) in the chest wall, a narrow tube called an endoscope attached
to a small camera. This allows physician to examine the lungs or other
structure within the chest cavity.

• Radiation treatments: Some people who receive radiation therapy
for lung or breast cancer show signs of lung damage months or some-
times years after the initial treatment. The severity of the damage
may depend on

∗ How much of the lung was exposed to radiation.

∗ The total amount of radiation administered.

∗ Whether chemotherapy also was used.

∗ The presence of underlying lung disease.

• Medications: Many drugs can damage your lungs, especially medi-
cations such as

∗ Chemotherapy drugs: Drugs designed to kill cancer cells, such
as methotrexate (Trexall, Otrexup, others) and cyclophosphamide,
can also damage lung tissue.

∗ Heart medications: Some drugs used to treat irregular heart-
beats, such as amiodarone (Cordarone, Nexterone, Pacerone),
may harm lung tissue.

∗ Some antibiotics: Antibiotics such as nitrofurantoin (Macro-
bid, Macrodantin, others) or ethambutol can cause lung damage.

∗ Anti-inflammatory drugs:Certain anti-inflammatory drugs such
as rituximab (Rituxan) or sulfasalazine (Azulfidine) can cause
lung damage.

1.2.5 Complications of Idiopathic Pulmonary Fibrosis

Complications of pulmonary fibrosis may include

• High blood pressure in your lungs (pulmonary hyperten-
sion): Unlike systemic high blood pressure, this condition affects

19



Chapter 1. Introduction 1.3. CT scan

Figure (1.3) CT scan

only the arteries in your lungs. It begins when the smallest arteries
and capillaries are compressed by scar tissue, causing increased resis-
tance to blood flow in your lungs. This in turn raises pressure within
the pulmonary arteries and the lower right heart chamber (right ven-
tricle). Some forms of pulmonary hypertension are serious illnesses
that become progressively worse and are sometimes fatal.

• Right-sided heart failure: This serious condition occurs when your
heart’s lower right chamber (ventricle) has to pump harder than usual
to move blood through partially blocked pulmonary arteries.

• Respiratory failure: This is often the last stage of chronic lung
disease. It occurs when blood oxygen levels fall dangerously low.

• Lung cancer: Long-standing pulmonary fibrosis also increases your
risk of developing lung cancer.

• Lung complications: As pulmonary fibrosis progresses, it may lead
to complications such as blood clots in the lungs, a collapsed lung or
lung infections.

1.3 CT scan

A computerized tomography (CT) scan combines a series of X-ray images
taken from different angles around your body and uses computer process-
ing to create cross-sectional images (slices) of the bones, blood vessels

20



Chapter 1. Introduction 1.4. Motivation

and soft tissues inside your body. CT scan images provide more-detailed
information than plain X-rays does.

A CT scan has many uses, but it’s particularly well-suited for
diagnosing diseases and evaluating injuries. The imaging technique can
help doctor to

• diagnose infections, muscle disorders, and bone fractures.

• diagnose interstitial lung disease including idiopathic pulmonary fi-
brosis.

• pinpoint the location of masses and tumors (including cancer).

• study the blood vessels and other internal structures.

• assess the extent of internal injuries and internal bleeding.

• guide procedures, such as surgeries and biopsies.

• monitor the effectiveness of treatments for certain medical conditions,
including cancer and heart disease.

1.4 Motivation

Imagine one day, your breathing became consistently labored and shallow.
Months later you were finally diagnosed with pulmonary fibrosis, a progres-
sive disease that naturally gets worse over time with no known cause and
no known cure, created by scarring of the lungs. If that happened to you,
you would want to know your prognosis. That’s where a troubling disease
becomes frightening for the patient. Outcomes can range from long-term
stability to rapid deterioration, Natural history of IPF is unknown and the
prediction of disease progression at the time of diagnosis is notoriously dif-
ficult and doctors aren’t easily able to tell where an individual may fall on
that spectrum. Data science, may be able to aid in this prediction. If suc-
cessful, patients and their families would better understand their prognosis
when they are first diagnosed with this incurable lung disease. Improved
severity detection would also positively impact treatment trial design and
accelerate the clinical development of novel treatments.
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1.5 Aim and Objective

Lung function is assessed based on output from a spirometer, which mea-
sures the forced vital capacity (FVC), i.e. the volume of air exhaled. Our
aim is to predict a patient’s severity of decline in lung function based on
a CT scan of their lungs, metadata, and baseline FVC as input. We want
to predict the final three FVC measurements for each patient, as well as a
confidence value in our prediction.

• Patient Week: A unique Id formed by concatenating the Patient
and Weeks columns (i.e. ABC 22 is a prediction for patient ABC at
week 22).

• FVC: The predicted FVC in ml.

• Confidence: A confidence value of your prediction (also has units of
ml).
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Background Study

For conducting our research project, we have explored a lot of paper that
are related and not related to our work. We have studied them in order
to explore how these research papers handle those challenges that we are
facing now. While we were exploring, we have found a few papers which
conducted deep learning approach on medical data specially on CT scan
images. We chose some particular papers because their working approach
is closely related to our work. We also deduced some ideas from these
papers for conducting our work.

A paper titled “Prediction of progression in idiopathic pulmonary
fibrosis using CT scans at baseline: A quantum particle swarm optimiza-
tion - Random forest approach” [7] by Yu Shi was published in 2019 which
is very recent. Their work is the first approach to show that it is possi-
ble to use only baseline HRCT scans to predict progression of idiopathic
pulmonary fibrosis using artificial intelligence. In their paper they try to
develop a novel predictive model for the radiological progression pattern
of idiopathic pulmonary fibrosis using only baseline HRCT scans. First,
they implemented a study design and having an expert radiologist con-
tour region of interests (ROI) at baseline scans, depending on its progres-
sion status in follow-up visits. Then they integrated the feature selection
with prediction by developing an algorithm using a wrapper method that
combines quantum particle swarm optimization to select a small number
of features with random forest to classify early patterns of progression.
They compare their result with other popular wrappers and non-wrapper
methods, i.e. smoothly clipped absolute deviation (SCAD), least abso-
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lute shrinkage and selection operator (LASSO), support vector machine
(SVM), neural network (NNET). Their proposed model yields an overall
accuracy rate of 82.1% which is superior to other feature selections and
classification methods mentioned above.

Next paper titled “Idiopathic Pulmonary Fibrosis: Gender -Age-
Physiology Index Stage for Predicting Future Lung Function Decline” [6]
by Margaret L. Salisbury. In the paper they showed that patients with
idiopathic pulmonary fibrosis (N = 657) were identified retrospectively
at three tertiary referral centers, and baseline GAP stages were assessed.
Mixed models were used to describe average trajectories of FVC and dif-
fusing capacity of the lung for carbon monoxide (DLCO). Multivariable
Cox proportional hazards models were used to assess whether declines in
pulmonary function ≥ 10% in 6 months predict mortality after account-
ing for GAP stage. They found that over a 2-year period, GAP stage
was not associated with differences in yearly lung function decline. After
accounting for stage, a 10% decrease in FVC or DLCO over 6 months inde-
pendently predicted death or transplantation. Patients with GAP stage 2
with declining pulmonary function experienced a survival profile similar to
patients with GAP stage 3, with 1-year event-free survival of 59.3%. They
came to a conclusion that baseline GAP stage predicted death or lung
transplantation but not the rate of future pulmonary function decline.

A study has been done in [10] by Ana Adriana Trusculescu et al.
titled Deep learning in interstitial lung disease. In their work they de-
scribe that interstitial lung diseases are a diverse group of disorders that
involve inflammation and fibrosis of interstitium, with clinical, radiologi-
cal, and pathological overlapping features. These are an important cause
of morbidity and mortality among lung diseases. This review describes
computer-aided diagnosis systems centered on deep learning approaches
that improve the diagnostic of interstitial lung diseases. They highlighted
the challenges and the implementation of important daily practice, espe-
cially in the early diagnosis of idiopathic pulmonary fibrosis (IPF). They
developed a convolutional neuronal network (CNN) that could be deployed
on any computer station and be accessible to non-academic centers is the
next frontier that needs to be crossed.

In [11] Shudong Wang et al. classify lung cancer from CT images
by deep residual neural networks with transfer learning strategy. They
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discuss about the accurate judgment of the pathological type of lung can-
cer is vital for treatment. Traditionally, the pathological type of lung
cancer requires a histopathological examination to determine, which is in-
vasive and time consuming. In their work, a novel residual neural network
is proposed to identify the pathological type of lung cancer via CT im-
ages. Due to the low amount of CT images in practice, they explored
a medical-to-medical transfer learning strategy. Specifically, a residual
neural network is pre trained on public medical images dataset luna16,
and then fine-tuned on their intellectual property lung cancer dataset col-
lected in Shan-dong Provincial Hospital. Data experiments shows that
their method achieves 85.71% accuracy in identifying pathological types
of lung cancer from CT images and outperforming other models trained
with 2054 labels. They show that their method performs better than
AlexNet, VGG16 and DenseNet, which provides an efficient, non-invasive
detection tool for pathological diagnosis.

In [3] Hyunkwang Lee et al. proposed an explainable deep-learning
algorithm for the detection of acute intracranial haemorrhage from small
datasets. They saw the improvements in image recognition via deep learn-
ing, machine-learning algorithms could eventually be applied to automated
medical diagnoses that can guide clinical decision-making. However, these
algorithms remain a ‘black box’ in terms of how they generate the pre-
dictions from the input data. Also, high-performance deep learning re-
quires large, high-quality training datasets. They report the development
of an understandable deep-learning system that detects acute intracranial
haemorrhage (ICH) and classifies five ICH subtypes from unenhanced head
computed-tomography scans. By using a dataset of only 904 cases for al-
gorithm training, their system achieved a performance similar to that of
expert radiologists in two independent test datasets containing 200 cases
(sensitivity of 98% and specificity of 95%) and 196 cases (sensitivity of
92% and specificity of 95%). The system includes an attention map and
a prediction basis retrieved from training data to enhance explainability,
and an iterative process that mimics the workflow of radiologists.

In another work [12] Yutong Xie presented an knowledge-based
collaborative deep learning for benign-malignant lung nodule classifica-
tion on chest CT scan. The paper shows that the accurate identification
of malignant lung nodules on chest CT is critical for the early detection
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of lung cancer, which also offers patients the best chance of cure. Deep
learning methods have recently been successfully introduced to computer
vision problems, although substantial challenges remain in the detection
of malignant nodules due to the lack of large training datasets. In the pa-
per, they propose a multi-view knowledge-based collaborative (MV-KBC)
deep model to separate malignant from benign nodules using limited chest
CT data. The model learns 3D lung nodule characteristics by decompos-
ing a 3D nodule into nine fixed views. For each view, they construct a
knowledge-based collaborative (KBC) sub model, where three types of im-
age patches are designed to fine-tune three pre-trained ResNet-50 networks
that characterize the nodules overall appearance, voxel and shape hetero-
geneity, respectively. They jointly use the nine KBC sub models to classify
lung nodules with an adaptive weighting scheme learned during the error
back propagation, which enables the MV-KBC model to be trained in an
end-to-end manner. The penalty loss function is used for better reduction
of the false negative rate with a minimal effect on the overall performance
of the MV-KBC model. They tested their method on the benchmark
LIDC-IDRI dataset and compared it to five state-of-the-art classification
approaches. The results show that the MV-KBC model achieved an ac-
curacy of 91.60% for lung nodule classification with an AUC of 95.70%.
These results are markedly superior to the state-of-the-art approaches.

A paper titled Prediction Analysis of Idiopathic Pulmonary Fibro-
sis Progression from OSIC Dataset [4] by work with the same dataset as
ours. Their objective is to analyse and compare the performance of vari-
ous machine leaning models by predicting the final forced volume capacity
measurements for each patient and a confidence value. Their main goal is
to deploy the model on any computer to predict a patient’s severe condi-
tion regarding lungs function which is based on a CT scan of the lungs of
the patients. Lung function is checked out based on a spirometer output
that measures the forced vital capacity (FVC) of the lungs. To conduct
the research the mainly followed three strategy which are Multiple Quan-
tile Regression, Ridge Regression and ElasticNet Regression. They also
discussed the result that they have found by using those three strategy.
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Dataset

We have collected our dataset from Open Source Imaging Consortium
(OSIC) which is a non-profit, co-operative effort between academia, in-
dustry and philanthropy.

3.1 Description

Our dataset contains two kinds of data.

1. HRCT scans

2. Tabular data

Both kinds of data are associated with clinical information for a set of pa-
tients. A patient has an image acquired at time Week=0 and has numerous
follow up visits over the course of approximately 1-2 years. The relative
timing of FVC measurements varies widely. The timing of the initial mea-
surement relative to the CT scan and the duration to the forecasted time
points differ for each patient. Features of the tabular data are:

• Patient: A unique Id for each patient (also the name of the patient’s
DICOM folder).

• Weeks: The relative number of weeks pre/post the baseline CT (may
be negative).
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• FVC: The recorded lung capacity in ml.

• Percent: A computed field which approximates the patient’s FVC
as a percent of the typical FVC for a person of similar characteristics.

• Age: Patient’s age.

• Sex: Patient’s gender.

• Smoking Status: Patient’s smoking status.

All the related information about tabular data are given below

• Total 1549 patients.

• 176 patients are unique.

• 33,026 files/images, 176 folders/patients.

• 187.0 average files/images per patient.

• 1,018 max files/images per patient.

3.2 Visualization

In this section we will visualize our dataset from different point of view.
The total number of entry in the dataset are 1549, among those 176 are
unique. Figure 3.1 shows the male female distribution of the dataset.
There are 139 male patient and 37 female patient in the dataset. The
ratio of the male female data are 78% and 22%. Figure 3.2 shows that the
dataset contains 118 ex-smokers data which is 67%, 18 patients data who
never smoked which is 28% and 9 patients data who are currently smok-
ing which is 5% of the total dataset. The above data shows that among
the patients ex-smokers are higher in number. Figure 3.3 represents the
combination of both figure 3.1 and figure 3.2. Among the patient who
are ex-smoker 106 of them are male and 12 of them are female. 26 male
patient and 23 female patient never smoked while 7 male patient and 2
female patient currently smokes. As of figure 3.4 the number of patients
is higher within the age of 62-73. The force vital capacity (FVC), is the
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Figure (3.1) Gender Distribution

volume of air exhaled. The value of FVC recorded in ml. Figure 3.5 rep-
resents histogram of the fvc value in training set. The histogram of figure
3.6 shows the number of patients in weeks pre/post baseline CT-scan in
training set. Negative weeks for pre baseline CT-scan. We can see that
the density is very higher close to the baseline Ct-scan. Figure 3.7 shows
the percent distribution of the training set. Figure 3.8 demonstrate the
age versus week distribution for male and female patient. There are some
negative values for Weeks. Because Weeks is the relative number, here
negative values represents weeks of pre baseline CT-scan. Positive values
indicates post baseline CT-scan. Blue scatter dots shows male patients
and red dots are females. The distribution of figure 3.9 shows the relation
between and age. From this data we can say that male have higher FVC
value with respect to female. The scatter plots of figure 3.10 FVC value
over number of weeks with respect to smoking status. Person never smoked
has FVC lower than smoker. Some Ex-smoker have very high FVC. fig-
ure 3.11 shows the relationship between age over percent with respect to
smoking status. Percent is very much related to Fvc value. As we can see
from the figure 3.12 that higher FVC value relates to higher percent value.
Figure 3.13 shows the co-relation between smoking habit and percent. For
ex-smoker percent value is high at the range of 50-90, for the patients who
never smoked percent value is high at the range of 50-70 and for current
smokers percent value is high at 70-100. Figure 3.14 and 3.15 represents
the the age distribution with respect to gender and smoking habit.
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Figure (3.2) Distribution of the Smoking Status column in the Unique Patient Set
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Figure (3.3) Gender vs Smoking Status
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Figure (3.4) Age Distribution in Training Set
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Figure (3.9) FVC vs Age Distribution
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3.3 Preprocessing

The CT-scan captures information about the radiodensity of an object or
tissue exposed to x-rays. A transversal slice of a scan is reconstructed after
taking measurements from several different directions.

We need to transform the CT-scan file to hounsfield units as the
spectral composition of the x-rays depends on the measurement settings
like acquisition parameters and tube voltage. By normalizing to values
of water and air (water has HU 0 and air -1000) the images of different
measurements are becoming comparable. A CT-scanner yields roughly
4000 grey values that can’t be captured by our eyes. This is why windowing
is performed. This way the image is displayed in a HU range that suites
most to the region of interest. Figure 3.17 shows the transformation from
original CT-scan image to CT- scan in hounsfield unit.

The voxel stands for the 3D-pixel that is given in a CT-scan. As
far as we have discovered it is spanned by the 2d-plane of the pixelspacing
attribute in x- and y-direction and the slice thickness in z-direction.

The pixelspacing attribute in the dicom files is an important one.
Figure 3.18 shows the pixel spacing distribution in row and column direc-
tion. It tells us how much physical distance is covered by one pixel. There
are only 2 values that describe the x- and y-direction in the plane of a
transversal slice. For one patient this pixelspacing is usually the same for
all slices. But between patients the pixelspacing can differ due to personal
or institutional preferences of doctors and the clinic and it also depends
on the scanner type. Consequently, if we compare two images in the size
of the lungs it does not automatically mean that the bigger one is really
larger in the physical size of the organ.

The slice thickness tells us how much distance is covered in Z-
direction by one slice. Figure 3.19 shows the distribution of physical area
& slice volume covered by a single ct-scan. Furthermore, the pixel array
of raw values covers a specific area given by row and column values. Very
thin slices allow more details to be shown. On the other hand, thick slices
contain less noise but are more prone to artifacts.

From figure 3.20 we can see that the large one has a lot of useless
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Figure (3.16) Pixel Array Distribution

region covered. In the second image with the large area the outside region
of the scanner tube is not set to the value of air but rather to some value
in the middle of the range -1000 to 1000.

(a) Original CT-scan (b) Pixelarray Distribution

(c) CT-scan in HU (d) HU values distribution

Figure (3.17) Original CT-scan vs CT-scan in Hounsfield Unit
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Figure (3.19) Physical Area & Slice Volume Covered by a Single CT-Scan

We are separating between potentially lung and air backgrounds.
As we only like to segment the lungs, we need to remove the background.
For this we will use morphological closing. Figure 3.22 shows how it looks
like if we use morphological closing in our image.

Figure (3.18) Pixel Spacing Distribution in Row and Column Direction

In order to generate pre-processed data, we should take a look
again at the different image sizes. For our data we have two major size
groups and some minor outliers. From figure 3.21 we can see that we have
132 patients CT-scan where the image size is 512× 512. For image size of
768×768, total patient count is 34 and rest of are 1 or 2. As we have total
34000 image we need to resize all the image to a fixed size of 512 × 512,
because the largest chunk of data are of that size. So, it will take less time
to generate the data.

37



Chapter 3. Dataset 3.3. Preprocessing

Figure (3.20) Smallest & largest CT-slice volume
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Figure (3.21) Image Sizes vs Patient Count
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Figure (3.22) Segmented Slices of Lungs
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Methodology

This chapter gives an overview of the different parts of our work chrono-
logically. In this section we will discuss about the theories, techniques,
and step by step workflow of our work.

In this project our main objective is to predict the progression of
idiopathic pulmonary fibrosis. But the prediction is notoriously difficult.
So, we proposed an approach to build a model that can hopefully predict
the progression of idiopathic pulmonary fibrosis.

Image Preprocessing is the most important step of working with
image data. In our case the image data is the CT scan. During image
preprocessing, we simultaneously prepare the images for our network and
apply data augmentation to the training set.

Transfer learning [5] is a machine learning technique where a model
trained on one task is re-purposed on a second related task.It is an opti-
mization that allows rapid progress or improved performance when mod-
eling the second task. Nevertheless, transfer learning is popular in deep
learning given the enormous resources required to train deep learning mod-
els or the large and challenging datasets on which deep learning models
are trained. Transfer learning only works in deep learning if the model fea-
tures learned from the first task are general. This form of transfer learning
used in deep learning is called inductive transfer. This is where the scope
of possible models (model bias) is narrowed in a beneficial way by using a
model fit on a different but related task.

We will use transfer learning along with quantile regression in our
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project. We will discuss briefly about different software and tools, different
transfer learning models, quantile regression [2] that we will use in our
project and the evaluation metric to evaluate our work in the following
section.

4.1 Software and Tools

The list of software and tools that we will be using throughout this project
is given below

• Python: Overall Scripting.

• Keras

• Tensorflow

• Numpy

• Pandas

• Matplotlib: Data Visualization.

• Cuda: Execution.

4.2 Transfer Learning

In this section we will discuss how to choose pre-trained model that is
suitable for different problem and we also discuss about the architecture
of different pre-trained model.

When people are repurposing a pre-trained model for their needs,
they start by removing the original classifier, then add a new classifier that
fits their purposes, and finally they have to fine-tune their model according
to one of three strategies

• A. Train the entire model: In this case, people use the architecture
of the pre-trained model and train it according to their dataset. If
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someone learning the model from scratch, so they will need a large
dataset and a lot of computational power.

• B. Train some layers and leave the others frozen: In pre-
trained model, lower layers refer to general features which are problem
independent, while higher layers refer to specific features which are
problem dependent. Here, people can choose how much they want
to adjust the weights of the network (a frozen layer does not change
during training). Usually, if someone have a small dataset and a
large number of parameters, they will leave more layers frozen to
avoid overfitting. By contrast, if the dataset is large and the number
of parameters is small, we can improve the model by training more
layers.

• C. Freeze the convolutional base: This case corresponds to an
extreme situation of the train/freeze trade-off. The main idea is to
keep the convolutional base in its original form and then use its out-
puts to feed the classifier. In this case we are using the pre-trained
model as a fixed feature extraction mechanism, which can be useful
if someone is short on computational power, dataset is small, and/or
pre-trained model solves a problem very similar to the one they want
to solve.

Unlike Strategy C, whose application is straightforward, Strategy A and
Strategy B require to be careful with the learning rate used in the convo-
lutional part. The learning rate is a hyper-parameter that controls how
much people adjust the weights of the network. When using a pre-trained
model based on CNN, it’s always a good practice to use a small learning
rate because high learning rates increase the risk of losing previous knowl-
edge. Assuming that the pre-trained model has been well trained, keeping
a small learning rate will ensure that it don’t distort the CNN weights too
soon and too much.

There are perhaps a dozen or more top-performing pre-trained
models for image recognition that can be downloaded and used as the
basis for image recognition, classification and related tasks. Some of them
are as follows

• VGG (e.g. VGG16 or VGG19).
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• GoogleNet (e.g. InceptionV3).

• Residual Network (e.g. ResNet34, ResNet50, ResNet101).

• DenseNet(e.g. DenseNet121, DenseNet169).

• EfficientNet(e.g. EfficientNetB0-EfficientNetB7).

4.2.1 VGG16

VGG16 is a convolutional neural network model proposed by K. Simonyan
and A. Zisserman [8]. VGG16 refers to the fact that it has 16 layers that
have some weights as shown in 4.1. It has 13 convolution and 3 fully con-
nected layer. Total depth is 23 including input, convolution, pooling, fully
connected layer and softmax. The dataset used for training, validation
and testing is ImageNet dataset. It contains 1.2 million training images,
50,000 validation images, and 150,000 testing images and the size of the
images is 256x256.

The input image size of VGG16 is 224x224. Therefore, the images
have been down-sampled to a fixed resolution of 224x224. This is a pretty
large network, and has a total of about 138.3 million parameters. The
model achieves 92.7% test accuracy in ImageNet.

Figure (4.1) VGG16 architecture

4.2.2 VGG19

VGG19 [8] is similar to VGG16. It has 19 layers that have some weights
consist of 16 convolution layer and 3 fully connected layer. The main
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difference of VGG19 with VGG16 is, it has three more layer of convolution
than VGG16 which shown in figure 4.2. So, Total depth is 26 including
input, convolution, pooling, fully connected layer and softmax. For three
more layers of convolution, total number of parameters is around 143.6
million. VGG19 which is bigger than VGG16, but because VGG16 does
almost as well as the VGG19 a lot of people use VGG16.

Figure (4.2) Comparison Between VGG16 and VGG19 Architecture

4.2.3 ResNet (34, 50, 100, 152)

Deep networks extract low, middle and high-level features and classifiers
in an end-to-end multi-layer fashion, and the number of stacked layers can
enrich the “levels” of features. When the deeper network starts to con-
verge, a degradation problem has been exposed: with the network depth
increasing, accuracy gets saturated (which might be unsurprising) and
then degrades rapidly which can be found in figure 4.3. The deterioration
of training accuracy shows that not all systems are easy to optimize.
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Figure (4.3) Training and testing error of deep network

To overcome this problem, Microsoft introduced a deep residual
learning framework [1] shown in 4.4. Instead of hoping every few stacked
layers directly fit a desired underlying mapping, they explicitly let these
layers fit a residual mapping. The formulation of F(x)+x can be realized
by feedforward neural networks with shortcut connections. Shortcut con-
nections are those skipping one or more layers. The shortcut connections
perform identity mapping, and their outputs are added to the outputs of
the stacked layers. Such residual part receives the input as an amplifier
to its output. The dimensions usually are the same. Either way – no
additional training parameters are used.

Figure (4.4) The residual block

ResNet trained on ImageNet dataset. Its input size is 224x224. To-
tal number of parameters of ResNet50 is around 25.6 million, for ResNet101
is 44.7 million and for ResNet152 is 60.4 million. ResNet50, Resnet101 and
ResNet152 achieved an accuracy of 92.1%, 92.8% and 93.1% respectively
on the test image.

Deeper network such as ResNet50, ResNet101 use bottleneck layer
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to improve efficiency. Keeps the time complexity same as the two layered
convolutions. Which allows us to increase the number of layers as well as
to converge much faster. 152-layer ResNet has 11.3 billion FLOPS while
VGG-16/19 nets have 15.3/19.6 billion FLOPS.

From figure 4.5, the plain baselines, which is the middle figure are
mainly inspired by the philosophy of VGG networks. The convolutional
layers mostly have 3×3 filters and follow two simple rules. One is, for the
same output feature map, the layers have the same number of filters and
number two is, if the size of the features map is halved, the number of
filters is doubled to preserve the time complexity of each layer.

Figure (4.5) ResNet34 architecture in comparison with VGG19

It is worth noticing that the ResNet model has fewer filters and
lower complexity than VGG networks. Based on the above plain network, a
shortcut connection is inserted (Upper side figure) which turn the network
into its counterpart residual version. The identity shortcuts can be directly
used when the input and output are of the same dimensions as you can
see from the solid line shortcut. When the dimensions increase (dotted
line shortcuts) it considers two options. First is the shortcut performing
identity mapping, with extra zero entries padded for increasing dimensions.
This option introduces no additional parameter. Second is the projection
shortcut is used to match dimensions (done by 1 × 1 convolutions). For
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either of the options, if the shortcuts go across feature maps of two size, it
performed with a stride of 2. Each ResNet block is either two layers deep
(used in small networks like ResNet 34) or 3 layers deep (such as ResNet
50, 101, 152).

4.2.4 EfficientNet

EfficientNet [9] is a convolutional neural network architecture and scaling
method that uniformly scales all dimensions of depth/width/resolution
using a compound coefficient. Unlike conventional practice in 4.6 that
arbitrary scales these factors, the EfficientNet scaling method uniformly
scales network width, depth, and resolution with a set of fixed scaling
coefficients. For example, if we want to use 2N times more computational
resources, then we can simply increase the network depth by αN , width by
βN , and image size by γn, where α, β, are constant coefficients determined
by a small grid search on the original small model. EfficientNet uses a
compound coefficient φ to uniformly scales network width, depth, and
resolution in a principled way.

Figure (4.6) Comparison of Different Scaling Methods.

The compound scaling method is justified by the intuition that
if the input image is bigger, then the network needs more layers to in-
crease the receptive field and more channels to capture more fine-grained
patterns on the bigger image. The base EfficientNet-B0 network is based
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Figure (4.7) Performance of EfficientNet

on the inverted bottleneck residual blocks of MobileNetV2, in addition
to squeeze-and-excitation blocks. This compound scaling method consis-
tently improves model accuracy and efficiency for scaling up existing mod-
els such as MobileNet (+1.4% imagenet accuracy), and ResNet (+0.7%),
compared to conventional scaling methods.

Comparing EfficientNets with other existing CNNs on ImageNet.
In general, the EfficientNet models achieve both higher accuracy and bet-
ter efficiency over existing CNNs, reducing parameter size and FLOPS
by an order of magnitude. For example, in the high-accuracy regime,
EfficientNet-B7 reaches state-of-the-art 84.4% top-1 / 97.1% top-5 accu-
racy on ImageNet, while being 8.4x smaller and 6.1x faster on CPU infer-
ence than the previous Gpipe. Compared with the widely used ResNet-50,
EfficientNet-B4 uses similar FLOPS, while improving the top-1 accuracy
from 76.3% of ResNet-50 to 82.6% (+6.3%).

Figure 4.7 shows the comparison of different model size vs accuracy.
EfficientNet-B0 is the baseline network, while Efficient-B1 to B7 are ob-
tained by scaling up the baseline network. In particular, our EfficientNet-
B7 achieves new state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy, while
being 8.4× smaller than the best existing CNN.

Though EfficientNets perform well on ImageNet, to be most useful,
they should also transfer to other datasets. To evaluate this, EfficientNets
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were tested on eight widely used transfer learning datasets. Efficient-
Nets achieved state-of-the-art accuracy in 5 out of the 8 datasets, such
as CIFAR-100 (91.7%) and Flowers (98.8%), with an order of magnitude
fewer parameters (up to 21× parameter reduction), suggesting that Ef-
ficientNets also transfer well. By providing significant improvements to
model efficiency, EfficientNets could potentially serve as a new foundation
for future computer vision tasks.

4.3 Quantile Regression

Before going deep in quantile regression, let’s look at a few concepts. Quan-
tiles are points in a distribution that relates to the rank order of values in
that distribution. The middle value of the sorted sample (middle quantile,
50th percentile) is known as the median.

Regression is a statistical method broadly used in quantitative
modeling. Standard linear regression techniques summarize the relation-
ship between a set of regressor/input variables and the outcome variable,
based on the conditional mean. This provides only a partial view of the
relationship, as we might be interested in describing the relationship at
different points in the conditional distribution of outcome variables.

Standard linear regression uses the method of least squares to cal-
culate the conditional mean of the outcome variable across different values
of the features. Quantile regression is an extension of Standard linear re-
gression, which estimates the conditional median of the outcome variable
and can be used when assumptions of linear regression do not meet.

Quantile regression methodology allows understanding relation-
ships between variables outside of the mean of the data, making it useful in
understanding outcomes that are non-normally distributed and that have
nonlinear relationships with predictor variables. Quantile regression allows
the analyst to drop the assumption that variables operate the same at the
upper tails of the distribution as at the mean and to identify the factors
that are important determinants of variables. Quantile regression can be
used in many purpose
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• To estimate the median, or the 0.25 quantile, or any quantile.

• Key assumption of linear regression is not satisfied.

• Find Outliers in the data.

• Increase in error variance with increase in outcome variable.

yi = β0 + β1xi1 + · · ·+ βpxip (4.1)

In equation 4.1 p is the number of regressor variables and n n is the number
of data points. The best linear regression line is found by minimizing the
mean square error shown in equation 4.2.

MSE =
1

n

n∑
i=1

(yi − β0 + (β1xi1 + · · ·+ βpxip))
2 (4.2)

Quantile Regression Model Equation for the τ quantile is

Qτ(yi) = β0(τ) + β1(τ)xi1 + · · ·+ βp(τ)xip (4.3)

In equation 4.3 p is the number of regressor variables and n n is the number
of data points. The best Quantile regression line is found by minimizing
by minimizing median absolute deviation.

MAD =
1

n

n∑
i=1

ρτ(yi − (β0(τ) + (β1(τ)xi1 + · · ·+ βp(τ)xip))
2 (4.4)

Here in equation 4.4 the function ρ is the check function which gives asym-
metric weights to the error depending on the quantile and the overall sign
of the error. Mathematically, ρ takes the form

ρτ(u) = τmax(u, 0) + (1− τ)max(−u, 0) (4.5)

4.4 Evaluation Metric: Laplace Log Likelihood

We will use a modified version of the laplace log likelihood to evaluate
our project. In medical applications, it is useful to evaluate a model’s
confidence in its decisions. Accordingly, the metric is designed to reflect
both the accuracy and certainty of each prediction. For each true FVC
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measurement, we predict both an FVC and a confidence measure (which
is standard deviation σ). The metric is computed as:

σclipped = max(σ, 70), (4.6)

∆ = min(|FV Ctrue − FV Cpredicted|, 1000), (4.7)

metric = −
√

2∆

σclipped
− ln(

√
2σclipped). (4.8)
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Chapter 5

Experiments & Results

5.1 Overview

In transfer learning we train the model with a dataset and after we train
the same model with another dataset that has a different distribution of
classes, or even with other classes than in the training dataset.

In Fine-tuning, another approach of transfer learning, we have a
dataset, and we use let’s say 80% of it in training. Then we train the
same model with the remaining 20%. Usually, we change the learning rate
to a smaller one, so it does not have a significant impact on the already
adjusted weights.

Training a deep convolutional neural network (CNN) from scratch
is difficult because it requires a large amount of labelled training data and
a great deal of expertise to ensure proper convergence. A promising alter-
native is to finetune a CNN that has been pre-trained using, for instance,
a large set of labelled natural images. However, the substantial differences
between natural and medical images may advise against such knowledge
transfer.

We complete this project in two parts. in the first part we will
work with image data along with some portion of categorical data to build
a model. In the second part we will use the model and to generate new
data frame to work with. Using that data frame with some modification
and calculation we build the final model to predict the progression.
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Figure (5.1) Model architecture using image data and partial categorical data

In the first part, we get all the image and prepare it for training.
We don’t want to train all the image data at once because it will raise out
of memory (OMM) error. To avoid the error we create an image generator
so that we can train one chunk of data at a time. After that we build the
model. The architecture of the model is shown in 5.1. At the beginning
we get a model and add input layer of size 512×512×1 because all models
input layer size is 224×224 then we set image data as the input of the pre-
trained model after that we add a global average pooling 2D layer. We
process the categorical data (age, gender and smoking status) and pass it
through a gaussian noise layer. We have done this two thing concurrently.
After that we concatenate both of them and after that we add a dropout
layer and pass it through a dense layer. Then we proceed for the training
phase. At the training phase we use early stopping. We use it because
too many epochs can lead to overfitting of the training dataset, whereas
too few may result in an underfit model. Early stopping is a method
that allows us to specify an arbitrary large number of training epochs and
stop training once the model performance stops improving on a hold out
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validation dataset. We use reduced learning rate on plateau in order to
reduce learning rate when a metric has stopped improving. Models often
benefit from reducing the learning rate by a factor of 2-10 once learning
stagnates. This callback monitors a quantity and if no improvement is
seen for a ’patience’ number of epochs, the learning rate is reduced. After
the completion of training we plot the training history to visualize how
well our model has trained which will be discussed in the next section.

Patient week FVC Confidence
ID00419637202311204720264 -12 3111.484416 161.671271
ID00421637202311550012437 -12 2857.890357 200.935648
ID00422637202311677017371 -12 2007.297131 153.969624
ID00423637202312137826377 -12 3420.942369 206.201271
ID00426637202313170790466 -12 2974.510875 121.335843

Table (5.1) Example submission table

In the second part of our project, We have created two variable
for storing train and test set namely ’tr’ for train and ’chunk’ for test. As
we tend to predict the fvc value with respect to week, we have stored the
sample submission information into a variable called ’sub’. As you can
see from the table 5.1, it has three features called ’Patient week’, ’fvc’ and
’confidence’ and every entry in the ’patient week’ field is in concatenated
form. So we split them into ’patient id’ and ’week’ field and created new
features in the ’sub’ table to store them. In the ’tr’, ’chunk’, and ’sub’

Patient ID Start FVC
ID00007637202177411956430 2315
ID00009637202177434476278 3660
ID00010637202177584971671 3523
ID00011637202177653955184 3326
ID00012637202177665765362 3418

Table (5.2) Example of starting week FVC for each patient

table we have created a feature called ’where’ and initialize it with ’train’,
’val’, and ’test’ respectively. Then we merge them together to create one
single table called ’data’. In the ’data’ table we have created a new feature
called ’start week’ and assign ’nan’ values (which means not a number) to
’start week’ corresponding to the ’test’ rows. After that we have calculated
arithmetic mean of weeks for each patient and assign ’start week’ column
by that value for each patient. Then we create a new table called ’base’

54



Chapter 5. Experiments & Results 5.1. Overview

Patient ID ... Male Female Ex
smoker

Never
smoked

Currently
smokes

ID00419637202311204720264 ... 1 0 1 0 0
ID00421637202311550012437 ... 1 0 0 0 1
ID00422637202311677017371 ... 0 1 0 1 0
ID00423637202312137826377 ... 1 0 0 1 0
ID00426637202313170790466 ... 0 1 0 1 0

Table (5.3) Updated data table

for only ’start week’ for each patient and add cumulative sum of weeks
in each row for each patient to get the starting week fvc value as shown
table 5.2. In the ’base’ table we have the initial weeks fvc value for each
table. We merge them with ’data’ table with respect to patient ID. In the
data table we have created a new feature called ’base week’. We subtract
’week’ from ’start week’ for each entry and put that value in ’base week’.
In order to save memory space delete ’base’ table as we don’t need it
anymore. We realize that the ’sex’ and ’smoking status’ are categorical
in nature so we created those features in the table and convert them in

Figure (5.2) Final model architecture
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boolean value.As you can see from 5.3 the table below if the patient is
a male the corresponding entry is 1 otherwise zero and same for smoking
status. Now, we have normalize all the value of ’age’, ’fvc’, ’week’, ’percent’
for each patient and add them in the ’feature’ table. In order to simplify
the calculation we did all these analysis in a single dataframe. After doing
that we again split them in train, validation and test set. Then we have
build another model to train the new dataset which is shown in 5.2. For
building the model we took the processed categorical and numerical data
and pass it through multiple dense layer. After that we have trained the
model and validate it with validation data. All the information about
training, validation, testing are discussed in the next section.

5.2 Result

First we trained our neural network from scratch. In this case we make a
dictionary consist of several model including 8 different type of Efficientnet
model, ReNet50 and VGG16. At this point we use only the architecture of
different model and train them from scratch without using the pretrained
weight. We get a model and add input layer of size 512× 512× 1 because
all models input layer size is 224 × 224. After that we added a pooling
layer at the end of the model architecture. We use Dropout layer. The
Dropout layer randomly sets input units to 0 with a frequency of rate at
each step during training time, which helps prevent overfitting.

We use batch size of 8, choose 30 for epoch and 0.003 as learning
rate. We used ModelCheckpoint in order to save the best model . The
best model is the one which has the lowest validation loss. We also used
Reduced on platow to reduce the learning rate when validation loss has
stopped improving. If improvement stops for consecutive 5 epochs learning
rate will be reduced by half(1

2).

We have trained 6 different model, which include 4 different type
of Efficientnet namely B0, B1, B2, B4. And ResNet50 and VGG16. All
these models are different in terms of parameters and architecture. We
have trained all these models with the same hyperparameters so that we
can compare all of them. EfficientNet B0 has the lowest validation loss
of 3.724704 and at that epoch train loss was 4.451072. For EfficientNet
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B1, lowest validation loss was 3.287487 and train loss was 4.078069. For
ResNet50, lowest validation loss was 1.505803 and train loss was 4.399539.
As we can see in the table 5.4, the train loss is almost the same for all
the 6 model. In terms of validation loss it stays almost the same for four
different EfficientNet model. But for ResNet50 and VGG16 the validation
loss is slightly lower. But when we test the model we find that ResNet50
and VGG16 is overfitting. Our assumption is that ResNet50 and VGG16
are deep in architecture which require a huge amount of training data but
our dataset is not that kind of big, this may led to overfit the data. Figure
5.3 shows the training and validation accuracy over 30 epoch for all six
model. But if we take a look a each graph of figure 5.3 we cannot see any
changes in training loss. This is because training loss is very small relative
to validation loss. To mitigate the problem we have plot the smooth curve
of training loss and validation of these model shown in figure 5.4 and 5.5
respectively.

We have evaluated our trained model on a modified version of
the Laplace Log Likelihood discussed in 4.8. In medical applications, it
is useful to evaluate a model’s confidence in its decisions. The error is
thresholded at 1000 ml to avoid large errors adversely penalizing results,
while the confidence values are clipped at 70 ml to reflect the approximate
measurement uncertainty in FVC. The final score is calculated by averag-
ing the metric across all test set Patient Weeks (three per patient). Note
that metric values will be negative and higher is better. We defined the
laplace log likelihood function in order to use it with some examples and
understand the metric. We find that -8.023 is the default score to beat
while cross-validating models on train data. Any model scoring worse than
this (which means lower than this) is not useful.

Model Name Train Loss Validation Loss
EfficientNet B0 4.451072 3.724704
EfficientNet B1 4.078069 3.287487
EfficientNet B2 4.495673 3.854002
EfficientNet B4 4.185572 3.281747

ResNet 50 4.399539 1.505803
VGG16 4.187896 1.489869

Table (5.4) Comparison of Training Loss And Validation Loss with Different Model
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In this phase we have trained the model for 600 epoch and validate
it with 5 fold cross validation. Speaking about validation, we make it as
close as possible to the scoring method used by organizers of the kaggle
competition. Originally, they scored only 3 last predictions (last 3 weeks
for each patient), so we developed a similar validation framework. For the
test set, we included only patients not present in the training set and used
only 3 last weeks for scoring. We have achieved the evaluation score as
high as to -6.6767.

In table 5.5 we compare our result with the result found in the
paper [4] and also with the Kaggle public leaderboard. We have sorted
the comparison table in descending order so we can see which score is
higher. As you can see we have achieved better result than others.

Model Name Score
Our Model (Efficientnet B1 + Quantile Regression) -6.6767
Elastic Net Regression (paper []) -6.73
Kaggle Leaderboard position 1 -6.7465
Kaggle Leaderboard position 1 -6.7471
Kaggle Leaderboard position 1 -6.7480
Ridge Regression -6.81
Multiple Quantile Regression -6.92

Table (5.5) Comparison of score of different models

As we discuss earlier, our intention of this project is to predict the
FVC value along with a confidence value. Table 5.6 shows the sample of
our prediction.

Patient week FVC Confidence
ID00419637202311204720264 -10 2922.207077 214.653266
ID00419637202311204720264 -11 2924.974276 214.762988
ID00419637202311204720264 -12 2927.741566 214.945554

Table (5.6) Example submission table
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Chapter 6

Discussion

In this chapter, we are going to explain about the limitations or challenges
related that we have faced to complete our project and how we can make
our model more efficient by doing further developments in the future.

6.1 Future Work

We would like to work with this project further. Some of our future de-
velopment goals are as follows:

• We would like to build a model from scratch and train it without using
transfer learning in order to see if transfer learning works better or
not.

• We would like to use Auto Encoder Decoder model for this problem.

• We will fine tune our existing model by tuning hyper parameters.

6.2 Challenges Limitations

While working on the project we have faced many limitations and chal-
lenges. Some of them are as follows:

• Lack of resources. There is not much resources available to conduct
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the research because deep learning approaches is new to the medical
field.

• Lack of computational power. At first we have struggled to train our
model because it takes 14-15 hours to train a model while epoch was
set to 25. We had to struggle with it for more than four month.

• Conflict between different libraries while installing.

6.3 Conclusion

In our work we have shown how we can use deep learning technique to
predict the idiopathic pulmonary fibrosis progression. This type of pre-
diction analysis, if applied effectively in medical sectors, can help patients
by analysing their lungs condition from Ct scan and the corresponding
other information so that treatment can be started as early as possible.
Early treatment can improve the survival rate of a patient. Thus,deep
learning can help medical practitioners to understand their prognosis in
a better way when they are first diagnosed with idiopathic pulmonary fi-
brosis. Hence, deep learning algorithms are adding significant value to the
healthcare industry as well as to the society aiming towards a healthy and
normal social lifestyle.
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